Microorganisms	UV Dose µW.sec/cm2	SGUVG - 5000 Ceiling-Jet			
Pseudomonas aeruginosa (lab)	3,900 (9)	99.0%		99.0%	
Avian Flu (Influenza A)	3,900 (16)	99.0%		99.0%	
Campylobacter jejuni	4,000 (2)	99.0%		99.0%	
Salmonella typhi	4,800 (2)	99.0%		99.0%	
Legionella pneumophila	5,500 (1,2)	99.0%		98.0%	
Staphylococcus aureus	5,800 (2, 5,6,8,11)	99.0%		98.0%	
Vibrio comma (cholera)	6,500 (9)	99.0%		95.0%	
MRSA	6600 (13)	99.0%		95.0%	
Influenza	6,600 (3,4,5,6,9)	99.0%		95.0%	
E-coli	6,600 (1,2)	99.0%		95.0%	
Klebsiella terrigena	6,700 (2)	99.0%		94.0%	
Coronavirus (SARS)	7,400 (15)	95.0%		92.0%	
Streptococcus faecalis	8,000 (2)	94.0%		90.0%	≡
Hepatitis A	8,000 (2)	94.0%		90.0%	e K
Agrobacterium	8500 (15)	93.0%		90.0%	% Percentage Kill
Bacillus anthracis	8,700 (15)	93.0%		88.0%	rcei
Clostridium Difficile	10,000 (14)	90.0%		85.0%	, Pe
Mycobacterium tuberculosis	10,000 (3,5,6,9,10)	90.0%		85.0%	%
Pseudomonas aeruginosa	10,500 (3,4,5,6)	90.0%		84.0%	
Herpes simplex	11,000 (17)	88.0%		82.0%	
Bacillus subtillis	11,000 (5,6,8)	88.0%		82.0%	
Clostridium botulinum	11200 (15)	88.0%		82.0%	
Stenotrophomonas maltophilia	12,000 (7)	85.0%		78.0%	
Salmonella anatum	12,000 (2)	85.0%		78.0%	
Klebsiella pneumoniae	15,000 (2)	80.0%		74.0%	
Micrococcus sphaeroides	15,400 (3,5)	80.0%		74.0%	
Rotavirus	20,000 (1)	75.0%		65.0%	
Bacillus subtilis spores	22,000 (2,4,5,6,8)	70.0%		62.0%	
Clostridium tetani	23,100 (15)	67.0%		60.0%	
B. anthracis Sterne	27500 (12)	60%		50%	
		Boost		Standard	

Operation Program

Performance tests carried out in partnership with the Pathogen Control Engineering Research Group at the School of Civil Engineering -University of Leeds

- References: 1. Hijnen et. al "Inactivation credit of UV radiation for viruses, bacteria and protozoan" 2006 2. "UV dose required to achieve incremental log macrivation of bacteria, protozoa and Viruses" IUVA March 2006 3. "The Use of Utraviolet Light for Microbial Control", Ultrapure Water, April 1989. 4. William V. Collento, "Treatment of Water with Ultraviolet Light Part I", Ultrapure Water, July/August 1986. 5. James E. Cruver, Ph.D., "Spotlight on Ultraviolet Disinfection," Water Technology, June 1984. 6. Dr. Robert W. Legan, "Alternative Disinfection Methods A Comparison of UV and Ozone", Industrial Water Engineering, March/April 1982. 7. G. Cairns, et. al. "Susceptibility of Burkholderia cepacia and other pathogens of importance in cystic Fbrosis to u.v. light", Letters in Applied Microbiology, 2001.

- Microbiology, 2001. 8. Rudolph Nagy, Research Report BL-R-6-1059-3023-1, Westinghouse Electric Corporation. 9. Myron Lupal, "UV Offers Reliable Disinfection", Water Conditioning & Purification, Nevember 1993. 10. John Treji, "Ultraviolet Technology", Water Conditioning & Purification, December 1995. 11. Bak Srikanth, "The Basic Benefits of Ultraviolet Technology", Water Conditioning & Purification, December 1995. 12. Nicholson Waye L., et al. "UV Resistance of baclus anthracis spores revisited: validation of baclus sublis spore as UV Surrogate for spores of B. anthracis Sterner, Applied and Environmental Microbiology, P62 2003 13. University of Ledds, "S. Aureus is assumed to have the same strain", personal communication, March 2008 14. Unpublished work by the University of Ledds, personal communication, September 2008 15. NQ Industries Inc. UV dosage necessary for complete destruction, 1997.

